33 research outputs found

    A graph-based approach for the retrieval of multi-modality medical images

    Get PDF
    Medical imaging has revolutionised modern medicine and is now an integral aspect of diagnosis and patient monitoring. The development of new imaging devices for a wide variety of clinical cases has spurred an increase in the data volume acquired in hospitals. These large data collections offer opportunities for search-based applications in evidence-based diagnosis, education, and biomedical research. However, conventional search methods that operate upon manual annotations are not feasible for this data volume. Content-based image retrieval (CBIR) is an image search technique that uses automatically derived visual features as search criteria and has demonstrable clinical benefits. However, very few studies have investigated the CBIR of multi-modality medical images, which are making a monumental impact in healthcare, e.g., combined positron emission tomography and computed tomography (PET-CT) for cancer diagnosis. In this thesis, we propose a new graph-based method for the CBIR of multi-modality medical images. We derive a graph representation that emphasises the spatial relationships between modalities by structurally constraining the graph based on image features, e.g., spatial proximity of tumours and organs. We also introduce a graph similarity calculation algorithm that prioritises the relationships between tumours and related organs. To enable effective human interpretation of retrieved multi-modality images, we also present a user interface that displays graph abstractions alongside complex multi-modality images. Our results demonstrated that our method achieved a high precision when retrieving images on the basis of tumour location within organs. The evaluation of our proposed UI design by user surveys revealed that it improved the ability of users to interpret and understand the similarity between retrieved PET-CT images. The work in this thesis advances the state-of-the-art by enabling a novel approach for the retrieval of multi-modality medical images

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005

    Efficient PET-CT image retrieval using graphs embedded into a vector space

    Get PDF
    Combined positron emission tomography and computed tomography (PET-CT) produces functional data (from PET) in relation to anatomical context (from CT) and it has made a major contribution to improved cancer diagnosis, tumour localisation, and staging. The ability to retrieve PET-CT images from large archives has potential applications in diagnosis, education, and research. PET-CT image retrieval requires the consideration of modality-specific 3D image features and spatial contextual relationships between features in both modalities. Graph-based retrieval methods have recently been applied to represent contextual relationships during PET-CT image retrieval. However, accurate methods are computationally complex, often requiring offline processing, and are unable to retrieve images at interactive rates. In this paper, we propose a method for PET-CT image retrieval using a vector space embedding of graph descriptors. Our method defines the vector space in terms of the distance between a graph representing a PET-CT image and a set of fixed-sized prototype graphs; each vector component measures the dissimilarity of the graph and a prototype. Our evaluation shows that our method is significantly faster (≈800Ă— speedup, p 0.05)

    Creating Graph Abstractions for the Interpretation of Combined Functional and Anatomical Medical Images

    Get PDF
    The characteristics of the images produced by advanced scanning technologies has led to medical imaging playing a critical role in modern healthcare. The most advanced medical scanners combine different modalities to produce multi-dimensional (3D/4D) complex data that is time-consuming and challenging interpret. The assimilation of these data is further compounded when multiple such images have to be compared, e.g., when assessing a patient’s response to treatment or results from a clinical search engine. Abstract representations that present the important discriminating characteristics of the data have the potential to prioritise the critical information in images and provide a more intuitive overview of the data, thereby increasing productivity when interpreting multiple complex medical images. Such abstractions act as a preview of the overall information and allow humans to decide when detailed inspection is necessary. Graphs are a natural method for abstracting medical images as they can represent the relationships between any pathology and the anatomical structures they affect. In this paper, we present a scheme for creating abstract graph visualisations that facilitate an intuitive comparison of the anatomy-pathology relationships within complex medical images. The properties of our abstractions are derived from the characteristics of regions of interest (ROIs) within the images. We demonstrate how our scheme is used to preview, interpret, and compare the location of tumours within volumetric (3D) functional and anatomical images

    Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation

    Get PDF
    The automated segmentation of regions of interest (ROIs) in medical imaging is the fundamental requirement for the derivation of high-level semantics for image analysis in clinical decision support systems. Traditional segmentation approaches such as region-based depend heavily upon hand-crafted features and a priori knowledge of the user. As such, these methods are difficult to adopt within a clinical environment. Recently, methods based on fully convolutional networks (FCN) have achieved great success in the segmentation of general images. FCNs leverage a large labeled dataset to hierarchically learn the features that best correspond to the shallow appearance as well as the deep semantics of the images. However, when applied to medical images, FCNs usually produce coarse ROI detection and poor boundary definitions primarily due to the limited number of labeled training data and limited constraints of label agreement among neighboring similar pixels. In this paper, we propose a new stacked FCN architecture with multi-channel learning (SFCN-ML). We embed the FCN in a stacked architecture to learn the foreground ROI features and background non-ROI features separately and then integrate these different channels to produce the final segmentation result. In contrast to traditional FCN methods, our SFCN-ML architecture enables the visual attributes and semantics derived from both the fore- and background channels to be iteratively learned and inferred. We conducted extensive experiments on three public datasets with a variety of visual challenges. Our results show that our SFCN-ML is more effective and robust than a routine FCN and its variants, and other state-of-the-art methods

    An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification

    Get PDF

    Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor Segmentation

    Full text link
    Multimodal positron emission tomography-computed tomography (PET-CT) is used routinely in the assessment of cancer. PET-CT combines the high sensitivity for tumor detection with PET and anatomical information from CT. Tumor segmentation is a critical element of PET-CT but at present, there is not an accurate automated segmentation method. Segmentation tends to be done manually by different imaging experts and it is labor-intensive and prone to errors and inconsistency. Previous automated segmentation methods largely focused on fusing information that is extracted separately from the PET and CT modalities, with the underlying assumption that each modality contains complementary information. However, these methods do not fully exploit the high PET tumor sensitivity that can guide the segmentation. We introduce a multimodal spatial attention module (MSAM) that automatically learns to emphasize regions (spatial areas) related to tumors and suppress normal regions with physiologic high-uptake. The resulting spatial attention maps are subsequently employed to target a convolutional neural network (CNN) for segmentation of areas with higher tumor likelihood. Our MSAM can be applied to common backbone architectures and trained end-to-end. Our experimental results on two clinical PET-CT datasets of non-small cell lung cancer (NSCLC) and soft tissue sarcoma (STS) validate the effectiveness of the MSAM in these different cancer types. We show that our MSAM, with a conventional U-Net backbone, surpasses the state-of-the-art lung tumor segmentation approach by a margin of 7.6% in Dice similarity coefficient (DSC)
    corecore